Welcome to Math 308!

Instructor: Juan Orendain

E-mail: juan.orendain[at]case[dot]edu

Office: Will appear soon

Office hours: Will appear soon

Schedule: MonWedFri 9:30am-10:20am

Location: Sears 333

Textbook: Abstract Algebra 3rd edition, D.S. Dummit and R.M. Foote, Wiley.

Announcement: Notes for class 4 together with problem set here. Due on Wed Sept. 14.

Announcement: Find the problem set for class 1 here. Due on Wednesday Sept. 7.

Announcement: A proper Canvas course will be created soon.

What is this class about? This is a first course in abstract algebra, which introduces the main types of algebraic structures used in mathematics and studies them in a mathematically rigorous way. Basically, we'll study lots of different situations where we work with mathematical objects that can be put together in different ways to produce new objects of the same type.

Official course description: A first course in abstract algebra, studied on an axiomatic basis. The major algebraic structures studied are groups, rings and fields. Topics include homomorphisms and quotient structures. This course is required of all students majoring in mathematics. It is helpful, but not necessary, for a student to have taken MATH 307 before MATH 308.

Homework: There will be reading and homework assignments based on the text. Homework should be written in pencil on plain printer paper. Please write the number and statement of each problem above its solution, and write your name at the top of the page. Homework will be collected and scored on a 0-10 scale, based on clarity, legibility, completeness, and correctness.

Grades: The three in-class exams will each count 10% of the grade and the final exam will count 30%. The remaining 40% of the grade will be based on homework, quizzes and class participation.

Discord: I have created a Discord server for the group to discuss homework, tests, etc. I will serve as moderator but won’t participate much. If you wish to be added, please send me an E-mail.

Proofs: In this class we'll be doing full-fledged, abstract theoretical mathematics from the very beginning of the class. In this document borrowed from Prof. Mark Meckes, you can find useful information on how to write rigorous mathematical proofs. Throughout the first couple of weeks I will be taking you through different methods for proving things.

General Schedule

Subject

Introduction

Groups

Rings

Fields

Introduction

Groups

Rings

Fields

Book chapters

0-1.2

1-3, 5-6

7-9

13

0-1.2

1-3, 5-6

7-9

13

Weeks

1 week

5-6 weeks

4-5 weeks

2 weeks

1 week

5-6 weeks

4-5 weeks

2 weeks

Weekly schedule

︎︎︎